Properties of the slant weighted Toeplitz operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalised Slant Weighted Toeplitz Operator

A slant weighted Toeplitz operator Aφ is an operator on L(β) defined as Aφ = WMφ where Mφ is the weighted multiplication operator and W is an operator on L(β) given by We2n = βn β2n en, {en}n∈Z being the orthonormal basis. In this paper, we generalise Aφ to the k-th order slant weighted Toeplitz operator Uφ and study its properties. Keywords—Slant weighted Toeplitz operator, weighted multiplica...

متن کامل

On kth-Order Slant Weighted Toeplitz Operator

Let β = [formula: see text] be a sequence of positive numbers with β0 = 1, 0 < β(n)/β(n+1) ≤ 1 when n ≥ 0 and 0 < β(n)/β(n-1) ≤ 1 when n ≤ 0. A kth-order slant weighted Toeplitz operator on L(2)(β) is given by U(φ) = W(k)M(φ), where M(φ) is the multiplication on L(2)(β) and W(k) is an operator on L(2)(β) given by W(k)e(nk)(z) = (β(n)/β(nk))e(n)(z), [formula: see text] being the orthonormal basi...

متن کامل

Essentially Slant Toeplitz Operators

The notion of an essentially slant Toeplitz operator on the space L is introduced and some of the properties of the set ESTO(L), the set of all essentially slant Toeplitz operators on L, are investigated. In particular the conditions under which the product of two operators in ESTO(L) is in ESTO(L) are discussed. The notion is generalized to kth-order essentially slant Toeplitz operators. The n...

متن کامل

Weighted slant Toep-Hank Operators

A $it{weighted~slant~Toep}$-$it{Hank}$ operator $L_{phi}^{beta}$ with symbol $phiin L^{infty}(beta)$ is an operator on $L^2(beta)$ whose representing matrix consists of all even (odd) columns from a weighted slant Hankel (slant weighted Toeplitz) matrix, $beta={beta_n}_{nin mathbb{Z}}$ be a sequence of positive numbers with $beta_0=1$. A matrix characterization for an operator to be $it{weighte...

متن کامل

On a weighted Toeplitz operator and its commutant

We study the structure of a class of weighted Toeplitz operators and obtain a description of the commutant of each operator in this class. We make some progress towards proving that the only operator in the commutant which is not a scalar multiple of the identity operator and which commutes with a nonzero compact operator is zero. The proof of the main statement relies on a conjecture which is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Functional Analysis

سال: 2011

ISSN: 2008-8752

DOI: 10.15352/afa/1399900259